

WASTE MANAGEMENT

2859 Paces Ferry Road Suite 1600 Atlanta, GA 30339 (770) 805-4130

March 14, 2008

NC Department of Environment and Natural Resources Division of Waste Management – Solid Waste Section 1646 Mail Service Center Raleigh, North Carolina 27699-1646

Attn: Mr. Mark Poindexter

Re: Alternate Source Demonstration

Piedmont Landfill and Recycling Center, Kernersville, North Carolina

Permit Number 34-06

Dear Mr. Poindexter:

Please find enclosed one (1) original copy of an Alternate Source Demonstration (ASD) for the above referenced facility. This document has been developed in response to a confirmed statistically significant increase (SSI) observed in MW-02 for vinyl chloride during the Second Semiannual Detection and Assessment Groundwater Monitoring Event for 2007. The ASD was developed in accordance with Section .1633(c)(3) and supports landfill gas as being the source of the contamination observed.

The ASD also documents a presumptive remedy (permanent modification of the site's landfill gas extraction system) which has already been successful in reducing the VOC detections in MW-02 to below the applicable Solid Waste Section Limit, as demonstrated by the analytical results contained in the report. Accordingly, it is recommended that MW-02 remain in detection monitoring and that no further action be required.

If you have any questions regarding the contents of this report or require additional information, please contact me at (770) 805-3529.

Sincerely,

Waste Management of Carolinas, Inc.

Mark R. Snyder, P.E.

Project Manager, Closed Sites

enclosure

cc: March Smith, WMCI (w/o enclosure)

Van Burbach, Ph.D., P.G. - JEI

Prepared For:

Piedmont Landfill & Recycling Center 9900 Freeman Road Kernersville, North Carolina 27284 Permit No. 34-06

Alternate Source Demonstration Piedmont Landfill & Recycling Center

March 2008

Prepared By:

2211 West Meadowview Road, Suite 101 Greensboro, North Carolina 27407 (336) 323-0092

Alternate Source Demonstration Piedmont Landfill & Recycling Center

February 2008

Prepared by:

2211 West Meadowview Road, Suite 101 Greensboro, North Carolina 27407

JEI Project No. 392.00.79

Prepared by:

G. Van Ness Burbach, Ph.D., T.G.

NC License # 1349

Reviewed by: Michellim Bron

Michelle M. Brown

Alternate Source Demonstration Piedmont Landfill and Recycling Center Permit 34-06

TABLE OF CONTENTS

1.0 In	troduction	1
2.0 Sit	te Description and Background	1
2.1	General Site Description	1
2.2	Site Geology and Hydrogeology	2
2.3	Groundwater Monitoring History	
2.4	September 2007 Sampling Event	
3.0 AS	SD Field Activities	
3.1	Adjustments to LFG Extraction System	
3.2	ASD Sampling Event	
4.0 So	ource Evaluation	
4.1	Leachate	
4.2	Landfill Gas	
4.2	2.1 Dissolved Methane	5
4.2	2.2 Effects of LFG Extraction System Adjustments	5
4.2		
4.2	2.4 Groundwater Chemistry	
5.0 Co	onclusions and Recommendations	
	Conclusions	
	Recommendations	
6.0 Re	eferences	8

TABLES:

- Table 1. Detected Constituents September 2007
- Table 2. Vacuum at LFG Extraction Wells Near MW-02
- Table 3. Results of February 2008 ASD Sampling Event

CHART:

Chart 1. Stiff Diagrams from February 2008 Sampling Event

FIGURE & DRAWINGS:

- Figure 1. Site Location Map
- Drawing 1. Site Plan with Groundwater Potentiometric Map
- Drawing 2. Site Plan with Landfill Gas Extraction System

APPENDIX:

Appendix A. Laboratory Reports, Chains of Custody, and Field Data

Alternate Source Demonstration Piedmont Landfill and Recycling Center Permit 34-06

1.0 INTRODUCTION

This Alternate Source Demonstration (ASD) is being submitted to address volatile organic compound (VOC) detections, specifically vinyl chloride detected above the Solid Waste Section Limit (SWSL) and North Carolina 15A-NCAC-2L (NC-2L) groundwater standard in the second semiannual sampling event of 2007 at the Piedmont Landfill and Recycling Center (PLRC), located in Forsyth County, North Carolina (*Figure 1*). The purpose of this report is to demonstrate that the source of the VOC detections in groundwater from monitoring well MW-02 in the September 2007 sampling event is not due to a release from the landfill unit and that continued detection monitoring for MW-02 is warranted. This report was prepared in accordance with NCAC T15A.13B.1633.c.3, as it applies to an alternate source demonstration.

2.0 SITE DESCRIPTION AND BACKGROUND

2.1 General Site Description

The PLRC is a closed municipal solid waste (MSW) landfill located on approximately 108 acres in Forsyth County, North Carolina, approximately 10 miles north of the city of Kernersville. The facility is permitted under North Carolina Solid Waste Permit Number 34-06. Waste Management of Carolinas, Inc. owns the facility, which opened in June 1990. Closure construction was completed October 29, 2004, and the closure was certified by the North Carolina Department of Environment and Natural Resources (NCDENR) on December 28, 2004. The location of the site is shown in *Figure 1* and a site plan showing the layout of the site is presented in *Drawing 1*.

A composite liner system on the landfill base consisting of 18 inches compacted cohesive soil with a maximum hydraulic conductivity of 1×10^{-7} cm/sec overlain by a 60 mil high-density polyethylene (HDPE) geomembrane exists in Phase I, Modules 1 and 2. A double synthetic with primary and secondary leachate collection systems is incorporated in Phase I, Modules 3, 5 and 6 and Phase II, Modules 1 and 2. All other liner systems in Phase I, II and III meet the requirements of the Solid Waste Management Regulations.

The facility also has had an active landfill gas (LFG) collection and control system in operation since 1996. The LFG system consists of 55 gas extraction wells, an extraction blower system, and flares. The locations of the gas extraction wells and other LFG system components are shown on *Drawing 2*.

2.2 Site Geology and Hydrogeology

The PLRC is located in the Piedmont physiographic province of North Carolina and is underlain by intrusive granitic rocks of Pennsylvanian to Permian age which are part of the Charlotte Belt Geologic Unit. Granitic bedrock is overlain by approximately 10-40 feet of saprolitic soil and regolith consisting of gray to brown sandy silt to silty sand, which grades downward to weathered bedrock.

The uppermost aquifer is unconfined and includes both the saprolite and uppermost fractured bedrock, which are strongly connected. The groundwater level measurements taken during the September 2007 sampling event were used to construct the groundwater surface contour map attached to this report as *Drawing 1*. Groundwater flow at the site is generally west to northwest, which is consistent with surface topography.

The potentiometric contours and the groundwater flow directions presented in $Drawing\ I$ were used to calculate hydraulic gradients for the site. The hydraulic gradients (i) ranged from 0.022 ft/ft to 0.025 ft/ft. These gradients are generally consistent with past interpretations for the site. An effective porosity value (n) of 41 percent was used in the equation based on an average of six laboratory-derived porosities as reported in the April 1994 $Design\ Hydrogeologic\ Study$, prepared by RUST Environment & Infrastructure. Hydraulic conductivities (K) were also taken from the $Design\ Hydrogeologic\ Study$, and were based on slug test data from piezometers originally located nearest the respective groundwater flow paths. Using these data, the average linear flow velocity (V) across the site was estimated using the following modified Darcy equation: $V = i\ K/n$. The groundwater flow rates for September 2007 were on average approximately 12.8 feet/year.

2.3 Groundwater Monitoring History

The landfill currently monitors groundwater under a combined Detection Monitoring and modified Assessment Monitoring Program. The site entered into an Assessment Monitoring Program for background wells MW-1 and MW-6, and down-gradient well MW-9 after volatile organic constituents were detected in MW-9 during the second semiannual event of 1996. Per receipt of approval from the North Carolina Department of Environment and Natural Resources (NC DENR), all wells at the site reverted to the Detection Monitoring Program as of the second semiannual event in 1999, as allowed by 15A NCAC 13B.1634 (b).

Due to a subsequent detection of 1,1-dichloroethane in replacement well MW-9R during the first semiannual event in 2000, the site performed Assessment Monitoring on wells MW-1, MW-6, and MW-9R through the second semiannual event of 2001. Following NC DENR approval of an August 20, 2001, request by Waste Management, background wells MW-1 and MW-6 again reverted to Detection Monitoring. Monitoring well MW-9R continues to be sampled for the NC Appendix I list of constituents plus detected Appendix II constituents during the first semiannual event and NC Appendix II list of constituents during the second semiannual event as long as statistically significant increases continue to be present. All other wells remain in detection monitoring.

2.4 September 2007 Sampling Event

Sampling for the second semiannual event of 2007 was performed on September 12-13, 2007 by Pro-Tech. During this semiannual event, all of the site compliance wells and surface water monitoring points were sampled and analyzed for the NC Appendix I list of constituents; except for MW-9R, which was sampled for the NC Appendix II list of constituents. The site leachate was also sampled during this event for the required list of parameters.

Two organic constituents were detected at quantifiable concentrations (above the SWSL) in MW-02, benzene (1.1 $\mu g/L$) and vinyl chloride (1.3 $\mu g/L$), during the September 2007 sampling event. Both of these detections also represented NC-2L exceedances. A resampling event was conducted for MW-02 on November 15, 2007, and the sample was analyzed for these two compounds. The results did not verify the benzene, which was reported at an estimated concentration of 0.98 $\mu g/L$, and which is below both the SWSL and the NC-2L standard; however, the resampling results confirmed the vinyl chloride exceedance at 1.3 $\mu g/L$, above the SWSL and the NC-2L Standard.

NC DNER was notified of the verified statistically significant increase (SSI) above background within 14 days of receipt of results, in accordance with 15A NCAC 13B.1633.c.1. The notification (transmittal letter dated December 19, 2007) indicated PLRC's intent to proceed with an ASD in accordance with 15A NCAC 13B.1634.c.3. Results from these sampling events were presented in the Second Semiannual Groundwater Report for the PLRC dated December 13, 2007. *Table 1* summarizes the detected constituents from this event, which are discussed below.

PLRC performed an initial evaluation of the data from the 2nd Semi-Annual Monitoring Event of 2007. Preliminary analysis suggested landfill gas was the source of the impacts at MW-02. This was based, in part, on the relatively low field conductivity and chloride levels in MW-02 (landfill impacts typically raise chlorides) and the fact that LFG vacuum was recently reduced in the vicinity the well, due to modifications to the gas collection system. PLRC immediately initiated actions to achieve more vacuum in the area of concern and to confirm the potential source of impacts. Following is a discussion of the field activities and the results of the source evaluation.

3.0 ASD FIELD ACTIVITIES

3.1 Adjustments to LFG Extraction System

In August 2007, the site's LFG extraction system was modified to improve overall system reliability and reduce downtime. Although this effort was successful, an inadvertent result of this modification was that the vacuum available to the wellfield, and subsequently to extraction wells in the vicinity of MW-02, was reduced. Prior to the modification, the average static pressure (vacuum) measured at the wellheads of the gas extraction wells closest to MW-02 (W-33, W-34, W-35, W-37, W-38, and W-39) was -6.7 inches of water. After the modification, and at the time of the September 2007 groundwater sampling event, the average vacuum at the same wells was approximately -1.3 inches of water. It should be noted that even though available vacuum decreased as a result of the LFG extraction system modification, at no time did

the site fail to meet the operational requirements of its NSPS / Title V permit. Additionally, the site continued to maintain compliance with all explosive gas monitoring criteria as demonstrated through quarterly gas migration monitoring.

In response to the SWRL exceedance for vinyl chloride in MW-02, measures were immediately initiated in October 2007 to address the situation. Since PLRC believed the vinyl chloride observed in MW-02 was most likely a result of landfill gas impact, the measures involved adjustments to the LFG extraction system to improve the vacuum, and therefore, the recovery of LFG in the vicinity on MW-02. During the period of October 24-26, 2007, the LFG system was adjusted by opening the valves on the wells nearest MW-02 to improve the vacuum on these wells. As a result, the average vacuum measured at W-33, W-34, W-35, W-37, W-38, and W-39 on October 26th was -6.3 inches of water, similar to that observed prior to modification of the LFG extraction system. In January 2008, additional permanent modification of the LFG header system in the vicinity of the flare was made which removed redundant elbows and fittings to eliminate resultant vacuum loss. As a result, available vacuum across the entire wellfield was further improved such that the average vacuum measured at the extraction wells near MW-02 on January 7, 2008, was -13.1 inches of water. Table 2 summarizes the static pressures at these wells between July 2007 and January 2008.

3.2 ASD Sampling Event

On February 5, 2008, a sampling event was conducted to gather additional data for this ASD report. The sampling event was timed so that the effects of the permanent LFG extraction system modifications could be evaluated. MW-01 (the site background well), MW-02, and the site leachate were sampled in accordance with standard sampling protocols for the site. All three samples were analyzed for the indicator parameters, TOC, TDS, Ammonia; dissolved methane and anions/cations (including calcium, magnesium, sodium, potassium, chloride, alkalinity (total, bicarbonate, carbonate), and sulfate). In addition, MW-02 was analyzed for vinyl chloride and the leachate sample was analyzed for all NC leachate list VOCs. The results of the February 5th sampling event are summarized in *Table 3* and the complete laboratory report, chain of custody, and field data forms, are included at *Appendix A*. Vinyl chloride was not detected above the SWSL or the laboratory reporting limit in MW-02 during the February 5th sampling event, suggesting that the permanent modifications to the LFG extraction system were successful in reducing the LFG impact to this well.

4.0 SOURCE EVALUATION

4.1 Leachate

Leachate analytical results were reviewed to evaluate the source of impacts to groundwater. Vinyl chloride has not been detected at quantifiable concentrations in any recent leachate samples from this facility. Vinyl chloride was not detected above the method detection limit in either the September 2007 sample or the February 5, 2008 sample. Other organics, such as acetone, methyl ethyl ketone, xylenes, etc., are detected at much higher concentrations in leachate (parts per million as compared to parts per billion, and which required dilution of the sample). These organics would be found in groundwater if landfill liquids were the source. The

leachate organic data indicates that the vinyl chloride detected in MW-02 in September and December 2007 could not have come from liquid impact to the groundwater.

Further evidence of this is the level of indicators (e.g. chlorides) and other inorganics in leachate. Indicator parameters, such as chlorides, dissolved solids, and ammonia, are found at high concentrations in the leachate relative to groundwater. Leachate impacts to ground water typically include multiple inorganic exceedances above background, increasing trends of leachate indicator parameters and verified VOC and inorganic detections and/or exceedances at more than one downgradient location. Since these trends are not present at this site, it is unlikely the VOCs detected in MW-02 were due to landfill liquids. An analysis of indicator parameter data to characterize the groundwater at MW-02 indicates that the groundwater has not been impacted by landfill liquids (see Section 4.2.4 and Table 3 of this report).

4.2 Landfill Gas

VOCs detected in groundwater samples collected from wells near solid waste landfills often are falsely attributed to landfill liquids without consideration of other potential sources such as landfill gas. Typically, landfill gas is made up of approximately 55% methane, 44% carbon dioxide, and 1% other VOCs, including chlorinated hydrocarbons like vinyl chloride (Allen, et al, 1997; Deipser and Stegmann, 1994; Cowie, 2004). Numerous studies have established that VOCs present in landfill gas can readily partition into groundwater. Transfer of VOCs from gas to groundwater can occur both in the monitor well and/or outside the monitor well. The objective of this section is to present data indicating that landfill gas is the source of recent vinyl chloride detections in groundwater at MW-02.

4.2.1 Dissolved Methane

Results for the February 2008 sampling event found dissolved methane at 1.3 mg/L in the groundwater sample from MW-02. This is more than 5000 times the methane concentration detected in the background well, MW-01. Methane was also detected in leachate at a similar concentration. If the leachate is the source of the methane in the groundwater, one would expect mixing to result in a much lower concentration in the groundwater than in the leachate; however, if landfill gas is impacting both groundwater and leachate independently, one would expect similar concentrations. Also, as noted above, other organics found in leachate are not found in groundwater (Table 3). These data suggest that methane from landfill gas has impacted the groundwater in the vicinity of MW-02; therefore, it is reasonable to suggest that other VOCs such as vinyl chloride have impacted the groundwater by the same mechanism.

4.2.2 Effects of LFG Extraction System Adjustments

As discussed in Section 3.1, the available vacuum at the gas extraction wells near MW-02 were lower than historical values at the time of the September 2007 groundwater sampling event. The lower vacuums could have resulted in reduced effectiveness of the LFG extraction system to control localized migration of LFG in the immediate vicinity of the landfill. The fact that the first new detections of VOCs in several years corresponded to this period of reduced effectiveness of the LFG system supports the contention that the VOCs are related to LFG.

Again, as discussed in Section 4.1, the LFG header system in the vicinity of the flare was permanently modified in January 2008, which increased the available vacuum across the entire wellfield. The vinyl chloride concentration in MW-02 from the February 2008 sampling event was reduced to below the SWSL standard, indicating that the modification of the LFG system was effective in the remediation of VOC impacts, further supporting the contention the LFG was the source of the impacts in the first place.

4.2.3 Effects of Drought Conditions

Recent drought conditions may also have contributed to the gas impact near MW-02. The summer and fall of 2007 was a period of extreme drought in North Carolina. The drought resulted in a depressed water table and desiccation of the vadose zone, allowing freer migration of gas and reducing the dilution and dispersion of impacts to the groundwater by reducing groundwater flow. It is likely that this was an exacerbating factor contributing to the detection of VOCs in the groundwater at MW-02 during the September 2007 sampling event and the November 2007 resample event.

4.2.4 Groundwater Chemistry

The Stiff diagrams shown in Chart 1 illustrate the relative concentrations of common anions/cations in the groundwater, including sodium (Na), chlorine (Cl), calcium (Ca), alkalinity (HCO₃), magnesium (Mg), and sulfate (SO₄). Stiff diagrams are commonly used to characterize groundwater from different sources and to help identify sources of groundwater contamination. There are also certain geochemical characteristics that are associated with gas impacts and others associated with leachate impacts that can be observed using Stiff diagrams. As carbon dioxide from the landfill gas dissolves in ground water, it forms carbonic acid, which drives the carbonate reaction forward.

$$H_2O+CO_2(g) \rightarrow H_2CO_3+Ca,Mg(CO_3) \rightarrow Ca,Mg+2HCO_3$$

Increases in alkalinity, calcium, and magnesium are commonly observed in gas impacted wells. Leachate impacted wells would show increases in inorganics such as chloride, sodium, TOC, COD, and other indicators.

Chart 1 shows Stiff diagrams for MW-01, MW-02, and the site leachate (T01) from the February 2008 sampling event. If MW-02 were significantly impacted by leachate, one would expect the shape of the Stiff diagram for MW-02 to more closely resemble the leachate (T01) than the backgound well (MW-01). The leachate shows proportionally higher concentrations of sodium and chlorine than observed in the two monitoring wells. If MW-02 were impacted by leachate, one would expect to see an increase in sodium and chlorine in MW-02 when compared to MW-01; however, no such increases are observed. The primary differences between MW-01 and MW-02 are increases in calcium and alkalinity in MW-02, both of which are indicators of LFG impact as opposed to leachate impact.

5.0 CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions

Groundwater and leachate analytical results were evaluated for evidence of both leachate impacts and LFG impacts in the groundwater. This *Alternate Source Demonstration* provides strong evidence that landfill gas is the source of recent VOC detections, particularly vinyl chloride, in groundwater monitoring well MW-02. Adjustments to, and permanent modification of the LFG extraction system have been implemented by PRLC as the presumptive remedy to mitigate any localized landfill gas migration. This investigation found the following:

- Organics detected in the leachate from the site are not found in groundwater and vinyl chloride is not typically detected in site leachate; therefore, it is highly unlikely that the vinyl chloride detected in MW-02 was a result of landfill liquid impact.
- Dissolved methane was detected in MW-02 at a concentration greater than 5000 times the
 concentration in the background well, MW-01. Although dissolved methane is also
 found in leachate, other organics found in leachate were not detected in groundwater,
 indicating that landfill gas has impacted the groundwater.
- Increases in sodium and chloride concentrations, which are indicative of liquid impacts, were not found in MW-02.
- Geochemical changes to groundwater resulting from landfill impact normally include multiple inorganic compounds and increased concentrations of leachate indicator parameters; however, these relationships were not observed in the groundwater samples from MW-02.
- The correlation of VOC detections in MW-02 during a period of reduced vacuum in nearby extraction wells, as well as the decrease in VOCs after permanent modification of the LFG header system in the vicinity of the flare improved available vacuum across the entire wellfield, supports the contention that the VOC impacts are related to LFG. Drought conditions may also have contributed to increased impact by LFG.

These observations all indicate that landfill gas, not landfill liquids, is the most likely source of the VOC detections, and especially of the exceedance of SWSL and NC-2L standards for vinyl chloride in MW-02 during the second semiannual sampling event of 2007 at the PLRC.

5.3 Recommendations

Based on the results of this demonstration and the fact that the presumptive remedy (permanent modification of the LFG extraction system) have been implemented, we recommend the following action:

Continue with routine detection monitoring for MW-02.

6.0 REFERENCES

Allen, M.R., Braithwaite, A., and Hills, C.C. (1997). Trace Organic Compounds in Landfill Gas at Seven U.K. Waste Disposal Sites. Environmental Science and Technology. v. 31, p. 1054-1061.

Cowie, S. (2004). Emission of Non-methane Organic Compounds (NMOCs) and hazardous air Pollutants (HAPs) from Decomposing Refuse and Individual Waste Components and Under Different Conditions. Master's Thesis, North Carolina State University.

Deisper, A. and Stegmann, R. (1994). The Origin and Fate of Volatile Trace Components in Municipal Solid Waste Landfills. Waste Management & Research. v. 12, p. 129-139.

Piedmont Landfill and Recycling Center Permit 34-06

TABLE 1: Detected ConstituentsSeptember 12-13, 2007 Sampling Event

WELLED	PARAMETER	RESULT	UNITS	SWSL	NC 2L
3406-MW02	Barium	110	μg/L	100	2000
3406-MW02	Benzene	1.1 (0.98 B)	μg/L	1	1
3406-MW02	Vinyl chloride	1.3 (1.3)	μg/L	1	0.015
3406-MW03	Chromium	12	μg/L	10	50
3406-MW04D	Chromium	10	μg/L	10	50
3406-MW09R	1.1-Dichloroethane	12	μg/L	5	70
3406-MW09R	cis-1,2-Dichloroethene	5.1	μg/L	5	10
3406-MW12	Zinc *	29	μg/L	10	1050

SWSL = NC DENR Solid Waste Section Limits

NC 2L = 15A-NCAC-2L Groundwater Standards

Values in parenthesis () are results from a resampling event copndcuted on November 15, 2007.

B = Estimated Concentration below the SWSL.

This table includes all NC Appendix I or II constituent detections that were quantified above the SWSL. Blank-qualified detections are excluded.

* The zinc detection in MW-12 was flagged by the laboratory as blank-qualified; however, it is included because the concentration in the sample was greater tha five times the blank concentration.

TABLE 2: Vacuum at Gas Extraction Wells near MW-02 (Static Pressure in inches-H₂O)

Date	W-33	W-34	W-35	W-37	W-38	W-39	AVG.
07/17/07	-3.1	-8.9	-3.5	-8.9	-8.8	-7.1	-6.72
08/13/07	-2.8	-8.6	-3	elegizinis (1989) 22.	Brigatorius (*)	-7.3	-3.83
08/16/07	-0.9		原识学术员	-1.8	-2.4		
09/10/07	-1	-2.2	15 X 22 25 10 10			-1.7	-1.32
09/11/07		A A A A A A A A A A A A A A A A A A A	-0.5	-1.3	-1.2		
10/09/07	-1.8	-2.5	-4	-2.9	-2.9	-2.4	-2.75
10/24/07	-5.1	-5.2	-3.2	-3.9	-4	-5.1	-4.42
10/26/07	-6.9	-7	-5.1	-5.9	-5.9	-6.9	-6.28
11/12/07	0	-7.3	-5.1	为建筑和建设车	erengebil	-6.9	-5.33
11/13/07			A STATE SECTION	-6.3	-4.8		
11/16/07	-6.5			Lagrandi di 1921 (8. Se Boli Gazza (8.			
12/11/07	-6.5	-6.8	-4.8	-4.9	-5	-6.5	-5.75
01/07/08	-13.7	-14.6	-10.9	-12.8	-12.7	-14	-13.12

All values represent static pressure at the wellheads in inches of water.

TABLE 3: Analytical Results from February 5, 2008 ASD Sampling Event

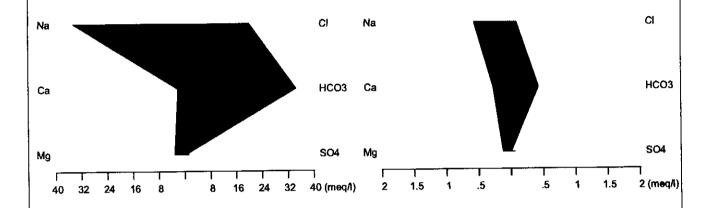
PARAMETER	MW-01		MW-02		TO-1		Units
Acetone	NA		NA		4500		μg/L
Benzene	NA		NA		6.3	J	μg/L
2-Butanone (MEK)	NA		NA		2400		μg/L
Carbon Disulfide	NA		NA		16	J	μg/L
1,4-Dichlorobenzene	NA		NA		4.4	J	μg/L
Ethylbenzene	NA		NA		14	J	μg/L
4-Methyl-2-Pentanone	NA		NA		99	j	μg/L
Toluene	NA		NA		14	J.	μg/L
Xylenses (total)	NA		NA		60		μg/L
Vinyl Chloride	NA		0.61	Ĵ	ND		μg/L
Methane	0.00025	J	1.3	r	1.8		mg/L
Potassium	8.5		2	В	240		mg/L
Magnesium	1.5		1.5		38		mg/L
Calcium	5.5	J	11	J	40	J	mg/L_
Sodium	13		13		790		mg/L
Chloride	3		4.7		710	Q	mg/L
Sulfate	ND _		ND_		17	B,G	mg/L
Nitrogen (Ammonia)	ND		ND		520	Q	mg/L
Total Dissolved Solids (TDS)	48		110		2200	Q	mg/L
Total Organic Carbon (TOC)	0.56	B, J	0.89	B, J	220	1, Q	mg/L
Bicarbonate Alkalinity (as CaCO ₃)	26		59		2100		mg/L
Carbonate Alkalinity	ND		ND		ND		mg/L_
Total Alkalinity	26	J	5 9	J	2100	J	mg/L
Free CO ₂	430		410	<u> </u>	250		mg/L
Field Temperature	14.1		15.9		16.6	1	ōС
Field Dissolved Oxygen (DO)	5.7		2.8		7.8		mg/L
Field pH	5.09		5.46		7.23	<u> </u>	SU
Field EH (ORP)	25.9		-10.7		-54.4	<u> </u>	mV
Field Conductivity	70		119	<u> </u>	4000	<u>l</u>	μmhos/cm

J = Estimated result less than the reporting limit (orginaics).

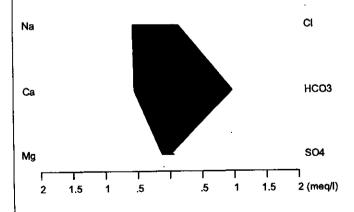
B = Estimated result less than the reporting limit (inorganics).

J = Blank-qualified data (inorganics).

Q = Elevated reporting limit due to high analyte levels.


G = Elevated reporting limit due matrix interferance.

ND = Not detected above the method detection limit.


NA = Not analyzed for this parameter.

Leachate, 2/5/2008

MW-01, 2/5/2008

MW-02, 2/5/2008

Description: Chart 1: Stiff Diagrams from February 2008 Sampling Event.

Project: Piedmont Landfill.	Project #: 392.00.79
Client: Waste Management	Date: 2/21/2008

APPENDIX A

Laboratory Reports, Chains-of-Custody, and Field Data Forms for February 2008 Sampling Event

ANALYTICAL REPORT

Project No. Site 134

Piedmont Landfill

Lot #: D8B060234

MW01 and MW02

Mark Snyder

Waste Management Inc.
Southern Area
2859 Paces Ferry Road Suite 1600
Atlanta, GA 30339

Cc: Van Burbach

TestAmerica Denver North Carolina Certification # 358

> Betsy Sara Project Manager

February 21, 2008

Table Of Contents

Standard Deliverables

Report Contents

Total Number of Pages

Standard Deliverables

The Cover Letter and the Report Cover page are considered integral parts of this Standard Deliverable package. This report is incomplete unless all pages indicated in this Table of Contents are included.

- Table of Contents
- Case Narrative
- Executive Summary Detection Highlights
- Methods Summary
- Method/Analyst Summary
- Lot Sample Summary
- Analytical Results
- QC Data Association Summary
- Chain-of-Custody

Lot #: D8B060234

Laboratory Control Samples (LCS)

The Laboratory Control Samples were within established control limits.

Matrix Spike and Matrix Spike Duplicate (MS/MSD)

The Matrix Spikes and Matrix Spike Duplicates performed on samples from other clients exhibited MS and/or MSD recoveries outside control limits for Tetrachloroethene Method 8260B and Ammonia Method 350.1. Because the corresponding Laboratory Control Samples and the Method Blank samples were within control limits, these anomalies may be due to matrix interference and no corrective action was taken.

All other MS/MSD samples were within established control limits.

General Chemistry

The analysis for Methane by Method RSK SOP-175 was performed at TestAmerica's Austin facility.

TestAmerica Austin 14046 Summit Drive Austin, TX 78728

Telephone: 512 244-0855

PREPARATION METHODS SUMMARY

D8B060234

PREPARA	TION DESCRIPTION	PREPARATION METHOD	ANALYTICAL METHOD
*****	*		NONE Color, Fie
Acid Di	gestion for Total Recoverable Metals	SW846 3005A	SW846 6010B
Ammonia	preparation	MCAWW 350.1	MCAWW 350.1
Bicarbo	nate Alkalinity	MCAWW 310.1	MCAWW 310.1
Carbona	te Alkalinity	MCAWW 310.1	MCAWW 310.1
Chlorid	e	MCAWW 300.0A	MCAWW 300.0A
Extract	ion, Water/Gas (Manual) -> Equilibration	RSK RSKSOP-175	RSK SOP-175
Field p	H	MCAWW 150.1	MCAWW 150.1
Field C	onductivity	MCAWW 120.1	MCAWW 120.1
Field T	emperature	MCAWW 170.1	MCAWW 170.1
Filtera	ble Residue (TDS)	MCAWW 160.1	MCAWW 160.1
Free Ca	rbon Dioxide	SM18 4500C	SM18 4500-CO2 C
Potenti	ometric titration to preselected pH	MCAWW 310.1	MCAWW 310.1
Sulfate		MCAWW 300.0A	MCAWW 300.0A
Total O	rganic Carbon	MCAWW 415.1	MCAWW 415.1
25 mL P	urge-and-Trap	SW846 5030B/826	SW846 8260B
Referen	ces:		
MCAWW	"Methods for Chemical Analysis of Wa EPA-600/4-79-020, March 1983 and sub		
NONE			
RSK	Sample Prep and Calculations for Dis in Water Samples Using a GC Headspace Technique, RSKSOP-175, REV. 0, 8/11/	e Equilibration	
SM18	"Standard Methods for the Examination Wastewater", 18th Edition, 1992.	on of Water and	
SW846	"Test Methods for Evaluating Solid W Methods", Third Edition, November 19		

METHOD / ANALYST SUMMARY

D8B060234

ANALYTICAL		ANALYST
METHOD	ANALYST	ID
MCAWW 120.1	Outside Lab	OUT
MCAWW 150.1	Outside Lab	OUT
MCAWW 160.1	ReAnna Davis	002266
MCAWW 170.1	Outside Lab	OUT
MCAWW 300.0A	Ewa Kudla	001167
MCAWW 310.1	Keri Dwire	008821
MCAWW 350.1	Kevin Bloom	006134
MCAWW 415.1	ReAnna Davis	002266
NONE Color, Field	Outside Lab	OUT
RSK SOP-175	Mark T. Maglitto	403649
SM18 4500-CO2 C	Keri Dwire	008821
SW846 6010B	Lynn-Anne Trudell	6645
SW846 8260B	Hauging Zhou	005417

References:

MCAWW	"Methods for Chemical Analysis of Water and Wastes", EPA-600/4-79-020, March 1983 and subsequent revisions.
NONE	
RSK	Sample Prep and Calculations for Dissolved Gas Analysis in Water Samples Using a GC Headspace Equilibration Technique, RSKSOP-175, REV. 0, 8/11/94, USEPA Research Lab
SM18	"Standard Methods for the Examination of Water and Wastewater", 18th Edition, 1992.
SW846	"Test Methods for Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 and its updates.

Client Sample ID: 3406-MW02

GC/MS Volatiles

Lot-Sample #:	D8B060234-002	Work Order #:	KGMH51AA	Matrix: WATER
Date Sampled:	02/05/08 12:06	Date Received:	02/06/08	
Prep Date:	02/14/08	Analysis Date:	02/14/08	
Prep Batch #:	8046387	Analysis Time:	13:51	
Dilution Factor:	1			

Method..... SW846 8260B

PARAMETER	RESULT	REPORTING UNITS	MDL
Vinyl chloride	0.61 J	1.0 ug/L	0.17
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Dibromofluoromethane	94	(79 - 119)	
1,2-Dichloroethane-d4	108	(65 - 126)	
4-Bromofluorobenzene	100	(75 - 115)	
Toluene-d8	98	(78 - 118)	

NOTE (S): J Estimated result. Result is less than RL.

1.3 Sept 07

Client Sample ID: 3406-MW02

GC Volatiles

Lot-Sample #: Date Sampled: Prep Date: Prep Batch #: Dilution Factor:	02/05/08 12:06 02/11/08 8043083		02/06/08 02/11/08	Matrix:	WATER
		Method:	RSK SOP-175		

REPORTING

 PARAMETER
 RESULT
 LIMIT
 UNITS
 MDL

 Methane
 1300
 5.0
 ug/L
 2.1

Client Sample ID: 3406-MN02

TOTAL Metals

Lot-Sample # Date Sampled			Received	: 02/06/0	08	Matrix:	WATER
PARAMETER	RESULT	REPORTING LIMIT	UNITS	METHOI)	PREPARATION- ANALYSIS DATE	WORK ORDER #
Prep Batch #	.: 8043200						
Potassium	2000 B	3000	ug/L	SW846	6010B	02/13/08	KGMH51AH
		Dilution Fact	or: 1	Analysis	Time: 14:13	MDL	: 240
Magnesium	1500	200	ug/L	SW846	6010B	02/13/08	KGMH51AJ
J		Dilution Fact	or: 1	Analysis	Time: 14:13	MDL	: 43
Calcium	11000 J	200	ug/L	SW846	6010B	02/13/08	KGMH51AN
		Dilution Fact		Analysis	Time: 14:13	MDL	.: 34
Sodium	13000	5000	ug/L	SW846	6010B	02/13/08	KGMH51AP
		Dilution Fact	or: 1	Analysis	Time: 14:13	MDL	.: 92

B Estimated result. Result is less than RL.

NOTE(S):

J Method blank contamination. The associated method blank contains the target analyte at a reportable level.

Client Sample ID: 3406-MW01

General Chemistry

Lot-Sample #...: D8B060234-001 Work Order #...: KGMHD

Matrix....: WATER

PARAMETER	RESULT	RL	UNITS	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
Total Dissolved Solids	48	10	mg/L	MCAWW 160.1	02/08/08	8039367
	Dil	ution Fact	or: 1	Analysis Time: 16:00	MDL	.: 4.7
Total Organic Carbon	-	1.0 ution Fact	mg/L .or: 1	MCAWW 415.1 Analysis Time: 17:00	02/07/08 MDL	8042107 .: 0.16

NOTE(S):

RL Reporting Limit

J Method blank contamination. The associated method blank contains the target analyte at a reportable level.

B Estimated result. Result is less than RL.

Client Sample ID: 3406-MW02

General Chemistry

Lot-Sample #...: D8B060234-002 Work Order #...: KGMH5

Matrix....: WATER

PARAMETER	RESULT	RL	UNITS	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
Total Alkalinity	59 J	5.0 ution Facto	mg/L or: 1	MCAWW 310.1 Analysis Time: 23:00	02/09/08 MDL	8041020 .: 1,1
Total Dissolved	110	10	mg/L	MCAWW 160.1	02/08/08	8039367
	Dil	lution Fact	or: 1	Analysis Time: 16:00	MDL	.: 4.7
Total Organic Carbon		1.0 lution Fact	mg/L or: 1	MCAWW 415.1 Analysis Time; 17:00	02/07/08 MDL	8042107 .: 0.16

NOTE(S):

RL Reporting Limit

J Method blank contamination. The associated method blank contains the target analyte at a reportable level.

B Estimated result. Result is less than RL.

METHOD BLANK REPORT

GC/MS Volatiles

Client Lot #...: D8B060234 Work Order #...: KG7GX1AA Matrix.....: WATER

MB Lot-Sample #: D8B150000-387

Prep Date....: 02/14/08 Analysis Time..: 13:03

Analysis Date..: 02/14/08 Prep Batch #...: 8046387

Dilution Factor: 1

RESULT	REPORTING LIMIT	UNITS	METHOD
ND	1.0	ug/L	SW846 8260B
PERCENT	RECOVERY		
RECOVERY	LIMITS		
94	(79 - 119)	
111	(65 - 126	}	
101	(75 - 115)	
101	(78 - 118)	
	ND PERCENT RECOVERY 94 111 101	RESULT LIMIT ND 1.0 PERCENT RECOVERY RECOVERY LIMITS 94 (79 - 119 111 (65 - 126 101 (75 - 115	RESULT LIMIT UNITS ND 1.0 ug/L PERCENT RECOVERY RECOVERY LIMITS 94 (79 - 119) 111 (65 - 126) 101 (75 - 115)

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

LABORATORY CONTROL SAMPLE DATA REPORT

GC/MS Volatiles

Client Lot #...: D8B060234 Work Order #...: KG7GX1AC Matrix.....: WATER

LCS Lot-Sample#: D8B150000-387

Prep Date....: 02/14/08 Analysis Date..: 02/14/08
Prep Batch #...: 8046387 Analysis Time..: 12:14

Dilution Factor: 1

	SPIKE	MEASURED		PERCENT	
PARAMETER	AMOUNT	AMOUNT	UNITS	RECOVERY	METHOD
1,1-Dichloroethene	10.0	9.12	ug/L	91	SW846 8260B
Benzene	10.0	9.07	ug/L	91	SW846 8260B
Chlorobenzene	10.0	8.20	ug/L	82	SW846 8260B
Toluene	10.0	8.30	ug/L	83	SW846 8260B
Trichloroethene	10.0	9.04	ug/L	90	SW846 8260B
Chloroform	10.0	9.33	ug/L	93	SW846 8260B
1,3-Dichlorobenzene	10.0	8.48	ug/L	85	SW846 8260B
1,1-Dichloroethane	10.0	9.51	ug/L	95	SW846 8260B
1,2-Dichloropropane	10.0	9.36	ug/L	94	SW846 8260B
Ethylbenzene	10.0	8.54	ug/L	85	SW846 8260B
Methylene chloride	10.0	7.81	ug/L	78	SW846 8260B
Tetrachloroethene	10.0	7.65	ug/L	77	SW846 8260B
1,1,1-Trichloroethane	10.0	9.82	ug/L	98	SW846 8260B
Carbon tetrachloride	10.0	9.50	ug/L	95	SW846 8260B
trans-1,2-Dichloroethene	10.0	8.46	ug/L	85	SW846 8260B
Bromodichloromethane	10.0	9.11	ug/L	91	SW846 8260B
		PERCENT	RECOVERY		
SURROGATE		RECOVERY	LIMITS	-	
Dibromofluoromethane		91	(79 - 119		
1,2-Dichloroethane-d4		110	(65 - 126)	
4-Bromofluorobenzene		97	(75 - 115)	
Toluene-d8		97	(78 - 118)	

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

MATRIX SPIKE SAMPLE EVALUATION REPORT

GC/MS Volatiles

SURROGATE	PERCENT RECOVERY	RECOVERY LIMITS
4-Bromofluorobenzene	99 99	(75 - 115) (75 - 115)
Toluene-d8	99 100	(78 - 118) (78 - 118)

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

a Spiked analyte recovery is outside stated control limits.

MATRIX SPIKE SAMPLE DATA REPORT

GC/MS Volatiles

Client Lot #...: D8B060234

Work Order #...: KG7A21AC-MS

Matrix WATER

MS Lot-Sample #: D7J080153-091

KG7A21AD-MSD

SURROGATE	PERCENT RECOVERY	RECOVERY LIMITS	
4-Bromofluorobenzene	99	(75 - 115)	
	99	(75 - 11 5)	
Toluene-d8	99	(78 - 118)	
	100	(78 - 118)	

NOTE (S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

a Spiked analyte recovery is outside stated control limits.

LABORATORY CONTROL SAMPLE EVALUATION REPORT

GC Volatiles

Client Lot #...: D8B060234 Work Order #...: KGXVM1AC-LCS Matrix..... WATER

LCS Lot-Sample#: I8B120000-083 KGXVM1AD-LCSD

Prep Date....: 02/11/08 Analysis Date..: 02/11/08

Prep Batch #...: 8043083 Analysis Time..: 09:44

Dilution Factor: 1

PARAMETER	PERCENT RECOVERY	RECOVERY LIMITS RPD	RPD LIMITS	METHOD
Methane	109	(40 - 130)		RSK SOP-175
	107	(40 - 130) 2.6	(0-20)	RSK SOP-175
Kthane	109	(32 - 131)		RSK SOP-175
	107	(32 - 131) 2.5	(0-20)	RSK SOP-175
Ethene	108	(32 - 148)		RSK SOP-175
	106	(32 - 148) 2.7	(0-20)	RSK SOP-175

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

MATRIX SPIKE SAMPLE EVALUATION REPORT

GC Volatiles

Client Lot #...: D8B060234 Work Order #...: KGRLM1AC-MS Matrix..... WATER

MS Lot-Sample #: I8B080135-002 KGRLMlAD-MSD

 Date Sampled...:
 02/04/08 13:50
 Date Received..:
 02/08/08

 Prep Date.....:
 02/11/08
 Analysis Date..:
 02/11/08

 Prep Batch #...:
 8043083
 Analysis Time..:
 12:11

Dilution Factor: 1

PARAMETER	PERCENT RECOVERY	RECOVERY LIMITS	RPD_	RPD LIMITS	METHOD
Methane	97	(40 - 130)			RSK SOP-175
	105	(40 - 130)	7.4	(0-20)	RSK SOP-175
Rthane	98	(32 - 131)			RSK SOP-175
	104	(32 - 131)	8.7	(0-20)	RSK SOP-175
Ethene	96	(32 - 148)			RSK SOP-175
Donata	104	(32 - 148)	11	(0-20)	RSK SOP-175

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

METHOD BLANK REPORT

TOTAL Metals

Client Lot #...: D8B060234 Matrix....: WATER

PARAMETER	RESULT	REPORTING LIMIT	G UNITS	METHOD	PREPARATION- ANALYSIS DATE	WORK ORDER #_
MB Lot-Sample	#: D8B12000	0-200 Prep B	atch #:	8043200		
Potassium	ND	3000	ug/L	SW846 6010B	02/13/08	KGX621CA
		Dilution Fact	tor: 1			
		Analysis Time	a: 13:42			
34	ND	200	ug/L	SW846 6010B	02/13/08	KGX621CC
Magnesium	IND	Dilution Fact	•			
		Analysis Time				
Calcium	68 B	200	ug/L	SW846 6010B	02/13/08	KGX621CD
COLOT	•• -	Dilution Fac	tor: 1			
		Analysis Tim	e: 13:42			
Sodium	ND	5000	ug/L	SW846 6010B	02/13/08	KGX621CE
30010111	110	Dilution Fac	-			
		Analysis Tim	e: 13:42			
NOTE(S):						

Calculations are performed before rounding to avoid round-off errors in calculated results.

B Estimated result. Result is less than RL.

LABORATORY CONTROL SAMPLE DATA REPORT

TOTAL Metals

Client Lot	#: D8E	3060234				Matrix:	WATER
PARAMETER	SPIKE AMOUNT	MEASURI AMOUNT	ED UNITS	PERCNT RECVRY	METHOD	PREPARATION- ANALYSIS DATE	WORK ORDER #
LCS Lot-Sam	ple#: D81 50000	3120000- 46200	200 Prep Ba ug/L Dilution Fact	92	: 8043200 SW846 6010B Analysis Time.	02/13/08	KGX621CF
Magnesium	50000	46100	ug/L Dilution Fact	92 cor: 1	SW846 6010B Analysis Time.	02/13/08	KGX621CG
Calcium	50000	46900	ug/L Dilution Fact	94 cor: 1	SW846 6010B Analysis Time.	02/13/08	KGX621CH
Sodium	50000	45400	ug/L Dilution Fact	91 tor: 1	SW846 6010B Analysis Time.	02/13/08	KGX621CJ
NOTE(S):	- <u>-</u> -		 .				

Calculations are performed before rounding to avoid round-off errors in calculated results.

MATRIX SPIKE SAMPLE DATA REPORT

TOTAL Metals

PARAMETER	SAMPLE AMOUNT	SPIKE AMT	MEASRD AMOUNT	UNITS	PERCNT RECVRY	RPD	METHOL)	PREPARATION- ANALYSIS DATE	WORK ORDER #
MS Lot-Sa	_	D8B0602	34-001	Prep Batch	#: 8	043200	כ			
Potassium	l									
	8500	50000	53600	ug/L	90		SW846		02/13/08	KGMHD1A0
	8500	50000	55400	ug/L	94	3.2	SW846	6010B	02/13/08	KGMHD1A1
			Dilut	ion Factor: 1						
			Analy	/sis Time: 16	:51					
Magnesium				•					00/12/00	KGMHD1A2
	1500	50000	48900	ug/L	95		SW846		02/13/08	
	1500	50000	50800	\mathtt{ug}/\mathtt{L}	99	3.9	SW846	6010B	02/13/08	KGMHD1A3
			Dilui	tion Factor: 1						
			Anal	ysis Time: 16	:51					
Calcium							G770 4 C	6010D	02/13/08	KGMHD1A4
	5500	50000	53800	ug/L	97			6010B	02/13/08	KGMHD1A5
	5500	50000	55900	ug/L	101	3.8	SWB46	6010B	02/13/08	KGMMDIAS
			Dilu	tion Factor: 1						
			Anal	ysis Time: 16	:51					
Sodium				t			0120 A C	6010D	02/13/08	KGMHD1A6
	13000	50000	54700	ug/L	82			6010B	02/13/08	KGMHD1A7
	13000	50000	56200	ug/L	85	2.6	SW\$46	6010B	02/13/08	KGPIDLA/
				tion Factor: 1						
			Anal	ysis Time: 16	:51					

Calculations are performed before rounding to avoid round-off errors in calculated results.

NOTE(S):

MATRIX SPIKE SAMPLE DATA REPORT

TOTAL Metals

Client Lot #...: D8B060234 Matrix.....: WATER

Date Sampled...: 02/05/08 08:42 Date Received..: 02/06/08

PARAMETE	SAMPLE R AMOUNT		MEASRD AMOUNT	UNITS	PERCNT RECVRY	RPD	METHOL)	PREPARATION- ANALYSIS DATE	WORK ORDER #
MS Lot-S	ample #:	D8B0602	55-001	Prep Batch	#: 8	04320	D			
Potassiu	_									
	560	50000	48400	ug/L	96		SW846		02/13/08	KGMPV1C3
	560	50000	49700	ug/L	98	2.5	SW846	6010B	02/13/08	KGMPV1C4
			Dilut	ion Factor: 1						
			Analy	ysis Time: 14	1:03					
Magnesiv			40400		0.4		C18016	6010B	02/13/08	KGMPV1C6
	1100	50000	48400	ug/L	94	2.8		6010B	02/13/08	KGMPV1C7
	1100	50000	49700	ug/L	97	2.0	24040	00100	02/15/00	
				tion Factor: 1						
			Analy	ysis Time: 14	:03					
Calcium										
carcram	860	50000	48900	ug/L	96	·	SW846	6010B	02/13/08	KGMPV1C9
	860	50000	50200	ug/L	99	2.7	SW846	6010B	02/13/08	KGMPV1DA
	000	50000	-	tion Factor: 1						
				ysis Time: l	4:03					
				-						
Sodium										
	2500	50000	49500	ug/L	94			6010B	02/13/08	KGMPV1DD
	2500	50000	50900	ug/L	97	2.8	SW846	6010B	02/13/08	KGMPV1DE
			Dilu	tion Factor: 1						
			Anal	ysis Time: 1	4:03					

NOTE(S):

METHOD BLANK REPORT

General Chemistry

Client Lot #...: D8B060234

Matrix....: WATER

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

B Estimated result. Result is less than RL.

LABORATORY CONTROL SAMPLE DATA REPORT

General Chemistry

Matrix..... WATER

Lot-Sample #...: D8B060234

TOC-Sembte #	1011	000254							
	SPIKE	MEASURE	.D	PERCNI	•			PREPARATION-	PREP
PARAMETER	AMOUNT	AMOUNT	UNITS	RECVRY	RPD	METHOI		ANALYSIS DATE	
Ammonia as N		WC	#:KGXOA1A	C-LCS/KG	XOA1A	D-LCSD	LCS Lot-Sa	mple#: D8B12000	0-137
	4.00	4.08	mg/L				350.1	02/11/08	8043137
	4.00	4.11	mg/L			MCAWW		02/11/08	8043137
			Dilution Fa	ctor: 1	;	Analysis	Time: 10:00		
Chloride		WC	#:KGREK1A	C-LCS/KG	REK1A	D-LCSD	LCS Lot-Sa	mple#: D8B08000	0-085
	25.0	25.3	mg/L			MCAWW	300.0A	02/07/08	8039085
	25.0	24.8	mg/L	99				02/07/08	8039085
			Dilution Fa	ctor: 1		Analysis	Time: 13:32		
Sulfate		W)#:KGRE11#	C-LCS/K	GRE11A	D-LCSD	LCS Lot-Sa	ample#: D8B08000	00-086
	25.0	25.0	mg/L	100		MCAWW	300.0A	02/07/08	8039086
	25.0	24.6	mg/L	98			300.0A		8039086
			Dilution Fa	actor: 1		Analysis	Time: 13:32		
Total Alkali	nity	W	O#:KGWEV1	AC-LCS/K	GWEV1A	D-LCSD	LCS Lot-Sa	ample#: D8B10000	00-020
	200	198	mg/L			MCAWW	310.1	02/09/08	8041020
	200	211	mg/L				310.1	02/02/00	8041020
			Dilution Fa	actor: 1		Analysis	Time: 23:00		
Total Dissol Solids	ved	W	O#:KG1PT12	AC-LCS/K	G1PT1#	D-LCSD	LCS Lot-Sa	ample#: D8B08000	00-367
201102	500	466	mg/L	93		MCAWW	160.1	02/08/08	8039367
	500	457	mg/L		2.0		160.1	02/08/08	8039367
	300		Dilution F				Time: 16:00		
Total Organi	c Carbon	a W	O#:KGXHL1	AC-LCS/K	GXHL1	D-LCSD	LCS Lot-S	ample#: D8B1100	00-107
	25.0	25.3	mg/L	101		MCAWW	415.1	02/07/08	8042107
	25.0	24.9	mg/L	100	1.5	MCAWW	415.1	02/07/08	8042107
			Dilution F	actor: 1		Analysis	Time: 16:00)	

NOTE(S):

MATRIX SPIKE SAMPLE DATA REPORT

General Chemistry

Client Lot #...: D8B060234 Matrix.....: WATER

Date Sampled...: 02/06/08 10:39 Date Received..: 02/07/08

SAMPLI PARAMETER AMOUN' Ammonia as N 1.4 1.4	E SPIKE C AMT 4.10 4.10	MEASRD AMOUNT UNITS WO#: KGKT81AE-M 4.54 N mg/L 4.46 N mg/L Dilution Factor: 1 Analysis Time: 10	77 75 1.6	D MS Lot-Samp MCAWW 350.1	PREPARATION- ANALYSIS DATE le #: D8B050252 02/11/08 02/11/08	PREP BATCH # -002 8043137 8043137
Ammonia as N	4 00	WO#: KGPXF1A7-M 3.61 N mg/L	S/KGPXF1A8-MS	D MS Lot-Samp	ole #: D8B070249 02/11/08	-008 8043137
0.22 0.22	4.00 4.00	3.61 N mg/L 3.60 N mg/L Dilution Factor: 1 Analysis Time: 16	84 0.49	MCAWW 350.1	02/11/08	8043137
Chloride		WO#: KF9GR1CD-M	S/KF9GR1CE-MS	ED MS Lot-Samp	ole #: D8A290265	-002
7.7	25.0	33.2 mg/L	102	MCAWW 300.0A	02/07/08	8039085
7.7	25.0	33.5 mg/L	103 1.1	MCAWW 300.0A	02/07/08	8039085
		Dilution Factor: 1 Analysis Time: 1	5:16			
Sulfate		wo#: KF9GR1CF-M	is/kf9GR1CG-M	SD MS Lot-Samp	le #: D8A290265	5-002
8.1	25.0	33.5 mg/L	102	MCAWW 300.0A	02/07/08	8039086
8.1	25.0	33.6 mg/L	102 0.50	MCAWW 300.0A	02/07/08	8039086
• • •		Dilution Factor: 1 Analysis Time: 1				
Total Organic Ca	rhan	WO#: KGMH51A1-M	AS / KOMHS1A2 - M	sp MS Lot-Samm	ole #: D8B060234	1-002
0.89	25.0	25.5 mg/L	98	MCAWW 415.1	02/07/08	8042107
0.89	25.0	25.5 mg/L Dilution Factor: 1	98 0.0	7 MCAWW 415.1	02/07/08	8042107
		Analysis Time: 1				

NOTE(S):

N Spiked analyte recovery is outside stated control limits.

SAMPLE DUPLICATE EVALUATION REPORT

General Chemistry

Client Lot #...: D8B060234

Work Order #...: KGFE2-SMP

Matrix..... WATER

KGFE2-DUP

Date Sampled...: 01/30/08 12:26 Date Received..: 02/01/08

PARAM RESULT	DUPLICATE RESULT	UNITS	RPD	RPD LIMIT	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
Total Alkalinity					SD Lot-Sample #:	D8B010186-001	
ND	ND	mg/L	0	(0-10)	MCAWW 310.1	02/09/08	8041020
		Dilution Fac	tor: 1	Ana	alysis Time: 23:00		

FIELD INFORMATION FORM	
Name: Pleamont Ut This Waste Management Field Information Form is Remained Frield Form is The Field Form is	Laboratory Use Only/Lab ID:
Site No.: Sample Point: Sample ID Submitted along with the Chain of Custody Forms that accompany the sample containers (i.e. with the cooler that is returned to the laboratory).	D88000534-001
8 0 2 0 5 0 8 1 0 3 0 0 1 8 1 0 9 1	10 11
PURGE DATE PURGE TIME ELAPSED HRS WATER VOL IN CASING ACTUAL (MM DD YY) (2400 Hr Clock) (histinin) (Gallons) Note: For Passive Sampling, replace "Water Vol in Casing" and "Well Yols Parged" vel Water Vol in Tubing/Flow Cell and Tubing/Flow Cell Vols Parged	AL VOL PURGED WELL VOLs (Gallons) PURGED d. Mark changes, record field data, below.
Purging and Sampling Equipment Dedicated: or N Filter Device: Y or N 0.45 µ or N 0.45	y (circle or fill in)
Purging Device C A- Submersible Pump D-Bailer A-In-line Disposa B-Peristaltic Pump E-Piston Pump Filter Type: B-Pressure B-Pressure A-Tagle-	X-Other
Sample Tube Type: D/C B-Stainless Steel	C-PVC X-Other: D-Polypropylene
Well Elevation 8 2 3 9 3 (firms) Depth to Water (DTW) 4 3 6 4 (fi) Groundwater Elevation (at TOC) Stick Up (from TOC) Casing 0 2	71 1 75 45 13
Total Well Depth (from TOC) Note: Total Well Depth, Stick Up, Casing Id, etc. are optional and can be from historical data, unless required by SticlPermit. Well Elevation, DTW, and	Casing PUC (in) Material PUC Groundwater Elevation must be current.
Sample Time Rate/Unit pH Conductance (SC/EC) Temp. Turbidity D.O. (2400 Hr Clock) (std) (μmhos/cm @ 25 °C) (°C) (ntu) (mg/L - ppm)	eH/ORP DTW (mV) (fi)
101310 1 6140 1 1518 11312 11018 415	1-1ZIO 1413 9
5199 - 713 1317 1716 511	109 439
© 10:36 371 571 5126 1 714 F140 169 514	11917 4319
	300 439
5 0 14 5 9	156 139
E 1 0 4 8 5 0 9 70 141 845 517	159 439
$\begin{bmatrix} 1 & 0 & 9 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1$	
Suggested range for 3 consec. readings or +/- 0.2 +/- 3% +/- 10%	+/- 25 mV Stabilize
Stabilization Data Fields are Optional (i.e. complete stabilization readings for parameters required by WM, Site, or State). These fields can be used to by State/Permit/Site. If a Data Logger or other Electronic format is used, fill in final readings below and submit electronic data separately to Site. If more fit	elds above are needed, use separate sheet of lorm
SAMPLE DATE PH CONDUCTANCE TEMP. TURBIDITY DO (MM DD YY) (std) (umhos/cm @ 25°C) (°C) (ntu) 4.0 (mg/L-ppm)	eH/ORP Other: #TW (mV) Units E+
SAMPLE DATE pH CONDUCTANCE TEMP. TURBIDITY DO (mg/L-ppm) [MM DD YY) (std) (umhos/cm @ 25°C) (°C) (ntu) 4.0 (mg/L-ppm) [Moderate of the condition of the condi	rometers required by Statel Permit/Site.
Sample Appearance: Cleat Odor: Color:	Other:
Weather Conditions (required daily, or as conditions change): Direction/Speed: E 0-5 Outlook: P. Woud	Precipitation: Y or (N)
Specific Comments (including purge/well volume calculations if required):	N-CELL VOL: SCOML
IS DOCTOR VOID 1545 IT IL	VIEW VOL. SWINE
Pural Pate: 200 mymin F51 Setting: 50 psi	
WELL CONDITION: GOOD, WELL PAD CAULK MAYBE DEVOLOPING TRACKS	5 AGAIN
Purose Pate: 200 mymin PSI setting: 50 psi Nell condition: Good, WELL PAD CAULK MAYBE DEVOLOPING TRACKS Sample time: 10:48	
I certify that sampling procedures were in accordance with applicable EPA, State, and WM protocols (if more than one sampler, all should	
2,5,08 Daniel Mindry DANIEL GIRPNER	JE!
02,05,08 Robert L Winfield Signature	SET Company 4
Signature Signature Signature Signature Polica DISTRIBUTION: WHITE/ORIGINAL - Stays with Sample, YELLOW - Returned to Client, PINK - Field C	Copy STL-8029WM R: 12/00

ANALYTICAL REPORT

Project No. Site 134

Piedmont Landfill

Lot #: D8B060251

T01

Mark Snyder

Waste Management Inc.
Southern Area
2859 Paces Ferry Road Suite 1600
Atlanta, GA 30339

Cc: Van Burbach

TestAmerica Denver
North Carolina Certification # 358

Betsy Sara Project Manager

February 22, 2008

RECEIVED FEB 2 5 2008

Table Of Contents

Standard Deliverables

Report Contents

Total Number of Pages

Standard Deliverables

The Cover Letter and the Report Cover page are considered integral parts of this Standard Deliverable package. This report is incomplete unless all pages indicated in this Table of Contents are included.

- Table of Contents
- Case Narrative
- Executive Summary Detection Highlights
- Methods Summary
- Method/Analyst Summary
- Lot Sample Summary
- Analytical Results
- QC Data Association Summary
- Chain-of-Custody

Method Blanks

Total Calcium Method 6010B, Total Alkalinity Method 310.1 and Total Organic Carbon (TOC) Method 415.1 were detected in the Method Blanks below the project established reporting limits. No corrective action is taken for any values in Method Blanks that are below the requested reporting limits. The Method Blank data are included at the end of this report.

All other Method Blanks were within established control limits.

Laboratory Control Samples (LCS)

The Laboratory Control Samples were within established control limits.

Matrix Spike and Matrix Spike Duplicate (MS/MSD)

The Matrix Spikes and Matrix Spike Duplicates performed on samples from other clients exhibited MS and/or MSD recoveries outside control limits for Tetrachloroethene Method 8260B and Ammonia Method 350.1. Because the corresponding Laboratory Control Samples and the Method Blank samples were within control limits, these anomalies may be due to matrix interference and no corrective action was taken.

All other MS/MSD samples were within established control limits.

Organics

The Method 8260B reporting limits for the sample 3406-T01 are elevated due to high levels of target analytes.

General Chemistry

The analysis for Methane by Method RSK SOP-175 was performed at TestAmerica's Austin facility.

TestAmerica Austin 14046 Summit Drive Austin, TX 78728

Telephone: 512 244-0855

PREPARATION METHODS SUMMARY

D8B060251

•
Α
-
5

References:

MCAWW	"Methods for Chemical Analysis of Water and Wastes", EPA-600/4-79-020, March 1983 and subsequent revisions.
RSK	Sample Prep and Calculations for Dissolved Gas Analysis in Water Samples Using a GC Headspace Equilibration Technique, RSKSOP-175, REV. 0, 8/11/94, USEPA Research Lab
SM18	"Standard Methods for the Examination of Water and Wastewater", 18th Edition, 1992.
SW846	"Test Methods for Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 and its updates.

METHOD / ANALYST SUMMARY

D8B060251

ANALYTICAL		ANALYST
METHOD	ANALYST	<u>ID</u>
MCAWW 160.1	ReAnna Davis	002266
MCAWW 300.0A	Ewa Kudla	001167
MCAWW 310.1	Keri Dwire	008821
MCAWW 350.1	Kevin Bloom	006134
MCAWW 415.1	ReAnna Davis	002266
RSK SOP-175	Mark T. Maglitto	403649
SM18 4500-CO2 C	Keri Dwire	008821
SW846 6010B	Lynn-Anne Trudell	6645
SW846 8260B	Hauging Zhou	005417
References:		
MCAWW "Methods	for Chemical Analysis of Water and Wastes	· ,

MCAWW	"Methods for Chemical Analysis of Water and Wastes", EPA-600/4-79-020, March 1983 and subsequent revisions.
RSK	Sample Prep and Calculations for Dissolved Gas Analysis in Water Samples Using a GC Headspace Equilibration Technique, RSKSOP-175, REV. 0, 8/11/94, USEPA Research Lab
SM18	"Standard Methods for the Examination of Water and Wastewater", 18th Edition, 1992.
SW846	"Test Methods for Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 and its updates.

Client Sample ID: 3406-T01

GC/MS Volatiles

Lot-Sample #...: D8B060251-001 Work Order #...: KGMPA1AF Matrix...... WATER

 Date Sampled...:
 02/05/08
 12:40
 Date Received...:
 02/06/08

 Prep Date....:
 02/12/08
 Analysis Date...:
 02/14/08

 Prep Batch #...:
 8045408
 Analysis Time...:
 16:48

Dilution Factor: 10

Method....: SW846 8260B

		REPORTIN	IG		
PARAMETER	RESULT	LIMIT	UNITS	MDL	
Acrylonitrile	ND	2000	ug/L	14	
Benzene	6.3 J	(30)	ug/L	1.6	
Bromochloromethane	ND	30	\mathtt{ug}/\mathtt{L}	1.0	
Bromodichloromethane	ND	30	ug/L	1.7	
Bromoform	ND	30	\mathtt{ug}/\mathtt{L}	1.9	
Bromomethane	ND	100	ug/L	2.1	
2-Butanone (MEK)	2400	1000	ug/L	18	
Carbon disulfide	16 J	1000	ug/L	4.5	
Carbon tetrachloride	ND	55	ug/L	1.9	
Chlorobenzene	ND	30	ug/L	1.7	
Dibromochloromethane	ND	30	ug/L	1.7	
Chloroethane	ND	100	\mathtt{ug}/\mathtt{L}	4.1	
Chloroform	ND	50	ug/L	1.6	
Chloromethane	ND	55	ug/L	3.0	
1,2-Dibromo-3-	ND	130	ug/L	15	
chloropropane (DBCP)					
1,2-Dibromoethane (EDB)	ND	30	ug/L	1.8	
Dibromomethane	ND	100	ug/L	1.7	
1,2-Dichlorobenzene	ND	100	ug/L	1.3	
1,4-Dichlorobenzene	4.4 J	30	ug/L	1.6	
trans-1,4-Dichloro-	ND	1000	ug/L	8.0	
2-butene					
1,1-Dichloroethane	ND	50	ug/L	1.6	
1,2-Dichloroethane	ND	30	ug/L	1.3	
cis-1,2-Dichloroethene	ND	_50	ug/L	1.5	
trans-1,2-Dichloroethene	ND	50	ug/L	1.5	
1,1-Dichloroethene	ND	50	ug/L	1.4	
1,2-Dichloropropane	ND	30	ug/L	1.3	
cis-1,3-Dichloropropene	ND	55	ug/L	1.6	
trans-1,3-Dichloropropene	ND	55	ug/L	1.9	
Ethylbenzene	14 J	50	ug/L	1.6	
2-Hexanone	ND	500	ug/L	14	
Iodomethane	ND	100	ug/L	2.3	
Methylene chloride	ND	55	ug/L	3.2	
4-Methyl-2-pentanone	99 J	1000	ug/L	4.9	
Styrene	ND	100	ug/L	1.7	
1,1,1,2-Tetrachloroethane	ND	50	ug/L	1.7	
1,1,2,2-Tetrachloroethane	ND	30	ug/L	2.0	

(Continued on next page)

Client Sample ID: 3406-T01

GC/MS Volatiles

Lot-Sample #: D8B060251-001 Date Sampled: 02/05/08 12:40 Prep Date: 02/12/08 Prep Batch #: 8045408 Dilution Factor: 40		02/06/08 02/14/08	Matri	K: WATER
	Method:	SW846 8260	В	
PARAMETER	RESULT	REPORTING LIMIT	UNITS	MDL
Acetone	45001	4000	uq/L	76
SURROGATE	PERCENT RECOVERY	RECOVERY LIMITS	_	
Dibromofluoromethane	96	(79 - 119)		
1,2-Dichloroethane-d4	111	(65 - 126)		
4-Bromofluorobenzene	102	(75 - 115)		
Toluene-d8	100	(78 - 118)		

Client Sample ID: TRIP BLANK

GC/MS Volatiles

Lot-Sample #: D8B060251-002	Work Order #: KGMPH1AA	Matrix: WATER
-----------------------------	------------------------	---------------

		REPORTIN	G	
PARAMETER	RESULT	LIMIT	UNITS	MDL
1,1,2,2-Tetrachloroethane	ND	3.0	ug/L	0.20
Tetrachloroethene	ND	3.0	ug/L	0.20
Toluene	ND	5.0	ug/L	0.17
1,1,1-Trichloroethane	ND	5.0	ug/L	0.16
1,1,2-Trichloroethane	ND	5.0	ug/L	0.32
Trichloroethene	ND	3.0	ug/L	0.16
Trichlorofluoromethane	ND	5.0	ug/L	0.29
1,2,3-Trichloropropane	ND	8.0	ug/L	0.27
Vinyl acetate	ND	50	ug/L	0.94
Vinyl chloride	ND	5.5	ug/L	0.17
Xylenes (total)	ND	4.0	ug/L	0.19
	PERCENT	RECOVERY		
SURROGATE	RECOVERY	LIMITS		
Dibromofluoromethane	95	(79 - 11	9)	
1,2-Dichloroethane-d4	111	(65 - 12	6)	
4-Bromofluorobenzene	99	(75 - 11	5)	
Toluene-d8	99	(78 - 11	8)	
NOTE(S):				

J Estimated result. Result is less than RL.

Client Sample ID: 3406-T01

TOTAL Metals

Lot-Sample # Date Sampled			Received.	.: 02/06/0	08	Matrix:	WATER
PARAMETER	RESULT	REPORTIN	IG UNITS	METHOL)	PREPARATION- ANALYSIS DATE	WORK ORDER #
Prep Batch #	.: 8043200						
Potassium	240000	3000	ug/L	SW846	6010B	02/13/08	KGMPALAH
		Dilution Fac	tor: 1	Analysis	Time: 14:18	MDL	: 240
Magnesium	38000	200	ug/L		6010B	02/13/08	KGMPAlaj
•		Dilution Fac	tor: 1	Analysis	Time: 14:18	MDL	.: 43
Calcium	40000 J	200	ug/L	SW846	6010B	02/13/08	KGMPALAN
		Dilution Fac	tor: 1	Analysis	Time: 14:18	MDL.,	.: 34
Sodium	790000	5000	ug/L	SW846	6010B	02/13/08	KGMPALAP
		Dilution Fac	_	Analysis	Time: 14:18	MDL	.: 92
Norm (4)							

J Method blank contamination. The associated method blank contains the target analyte at a reportable level.

Client Sample ID: 3406-T01

General Chemistry

Lot-Sample #...: D8B060251-001

Work Order #...: KGMPA

Matrix....: WATER

PARAMETER	RESULT	RL	UNITS	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
Total Alkalinity	2100 J	5.0 ution Fact	mg/L	MCAWW 310.1 Analysis Time: 18:00	02/07/08 MDL	8040130 .: 1.1
Total Dissolved Solids	2200 Q	20	mg/L	MCANW 160.1	02/07/08	8038396
	Lia	ution Fact	or: 2	Analysis Time: 17:00	MDL	.: 9.4
Total Organic Carbon		20 ution Fact	mg/L cor: 20	MCAWW 415.1 Analysis Time: 18:00	02/07/08 MDL	8042107 .: 3.1

NOTE(S):

RL Reporting Limit

Q Elevated reporting limit. The reporting limit is elevated due to high analyte levels.

LT RPD calc. does not provide useful info due to sample weight variation.

B Estimated result. Result is less than RL.

G Elevated reporting limit. The reporting limit is elevated due to matrix interference.

J Method blank contamination. The associated method blank contains the target analyte at a reportable level.

METHOD BLANK REPORT

GC/MS Volatiles

Client Lot #...: D8B060251 Work Order #...: KG6QT1AA Matrix.....: WATER

MB Lot-Sample #: D8B140000-408

Prep Date.....: 02/12/08 Analysis Time..: 13:03

Analysis Date..: 02/14/08 Prep Batch #...: 8045408

Dilution Factor: 1

		REPORTI	NG			
PARAMETER	RESULT	LIMIT_	UNITS	METHOD		
Acetone	ND	100	ug/L	SW846 8260B		
Acrylonitrile	ND	200	ug/L	SW846 8260B		
Benzene	ND	3.0	ug/L	SW846 8260B		
Bromochloromethane	ND	3.0	ug/L	SW846 8260B		
Bromodichloromethane	ND	3.0	ug/L	SW846 8260B		
Bromoform	ND	3.0	ug/L	SW846 8260B		
Bromomethane	ND	10	ug/L	SW846 8260B		
2-Butanone (MEK)	ND	100	ug/L	SW846 8260B		
Carbon disulfide	ND	100	ug/L	SW846 8260B		
Carbon tetrachloride	ND	5.5	ug/L	SW846 8260B		
Chlorobenzene	ND	3.0	ug/L	SW846 8260B		
Dibromochloromethane	ND	3.0	ug/L	SW846 8260B		
Chloroethane	ND	10	ug/L	SW846 8260B		
Chloroform	ND	5.0	ug/L	SW846 8260B		
Chloromethane	ND	5.5	ug/L	SW846 8260B		
1,2-Dibromo-3-	ND	13	ug/L	SW846 8260B		
chloropropane (DBCP)			_			
1.2-Dibromoethane (EDB)	ND	3.0	ug/L	SW846 8260B		
Dibromomethane	ND	10	ug/L	SW846 8260B		
1,2-Dichlorobenzene	ND	10	ug/L	SW846 8260B		
1,4-Dichlorobenzene	ND	3.0	ug/L	SW846 8260B		
trans-1,4-Dichloro-	ND	100	ug/L	SW846 8260B		
2-butene			•			
1,1-Dichloroethane	ND	5.0	ug/L	SW846 8260B		
1,2-Dichloroethane	ND	3.0	ug/L	SW846 8260B		
cis-1,2-Dichloroethene	ND	5.0	ug/L	SW846 8260B		
trans-1,2-Dichloroethene	ND	5.0	ug/L	SW846 8260B		
1,1-Dichloroethene	ND	5.0	ug/L	SW846 8260B		
1,2-Dichloropropane	ND	3.0	ug/L	SW846 8260B		
cis-1,3-Dichloropropene	ND	5.5	ug/L	SW846 8260B		
trans-1,3-Dichloropropene	ND	5.5	ug/L	SW846 8260B		
Ethylbenzene	ND	5.0	ug/L	SW846 8260B		
2-Hexanone	ND	50	ug/L	SW846 8260B		
Iodomethane	ND	10	ug/L	SW846 8260B		
Methylene chloride	ND	5.5	ug/L	SW846 8260B		
4-Methyl-2-pentanone	ND	100	ug/L	SW846 8260B		
Styrene	ND	10	ug/L	SW846 8260B		
1,1,1,2-Tetrachloroethane	ND	5.0	ug/L	SW846 8260B		
1,1,2,2-Tetrachloroethane	ND	3.0	ug/L	SW846 8260B		
Tetrachloroethene	ND	3.0	ug/L	SW846 8260B		
Toluene	ND	5.0	ug/L	SW846 8260B		

LABORATORY CONTROL SAMPLE EVALUATION REPORT

GC/MS Volatiles

Client Lot #...: D8B060251 Work Order #...: KG6QT1AC Matrix.....: WATER

LCS Lot-Sample#: D8B140000-408

 Prep Date....:
 02/12/08
 Analysis Date..:
 02/14/08

 Prep Batch #...:
 8045408
 Analysis Time..:
 12:14

Dilution Factor: 1

	PERCENT	RECOVERY	
PARAMETER	RECOVERY	LIMITS	METHOD
Benzene	91	(77 - 118)	SW846 8260B
1,3-Dichlorobenzene	85	(75 - 115)	SW846 8260B
Bromodichloromethane	91	(78 - 118)	SW846 8260B
Carbon tetrachloride	95	(80 - 120)	SW846 8260B
Chlorobenzene	82	(78 - 118)	SW846 8260B
Chloroform	93	(78 - 118)	SW846 8260B
1,1-Dichloroethane	95	(77 - 117)	SW846 8260B
trans-1,2-Dichloroethene	85	(80 - 120)	SW846 8260B
1,1-Dichloroethene	91	(68 - 133)	SW846 8260B
1,2-Dichloropropane	94	(76 - 116)	SW846 8260B
Ethylbenzene	85	(78 - 118)	SW846 8260B
Methylene chloride	78	(71 - 11 9)	SW846 8260B
Tetrachloroethene	77	(77 - 117)	SW846 8260B
Toluene	83	(73 - 120)	SW846 8260B
1,1,1-Trichloroethane	98	(78 - 118)	SW846 8260B
Trichloroethene	90	(78 - 122)	SW846 8260B
		PERCENT	RECOVERY
SURROGATE		RECOVERY	LIMITS
Dibromofluoromethane		91	(79 - 119)
1,2-Dichloroethane-d4		110	(65 - 126)
1-Bromofluorobenzene		97	(75 - 115)
Toluene-d8		97	(78 - 118)

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

Bold print denotes control parameters

MATRIX SPIKE SAMPLE EVALUATION REPORT

GC/MS Volatiles

Client Lot #...: D8B060251 Work Order #...: KGKLK1AD-MS Matrix.....: WATER

MS Lot-Sample #: D8B050227-012 KGKLK1AE-MSD

 Date Sampled...:
 02/04/08 11:45 Date Received...:
 02/05/08

 Prep Date.....:
 02/12/08 Analysis Date...:
 02/14/08

 Prep Batch #...:
 8045408 Analysis Time...:
 17:12

Dilution Factor: 1

	PERCENT	RECOVERY		RPD	
PARAMETER	RECOVERY	LIMITS	RPD	LIMITS	METHOD
Benzene	100	(77 - 118)			SW846 8260B
	100	(77 - 118)	0.26	(0-20)	SW846 8260B
1,3-Dichlorobenzene	93	(75 - 115)			SW846 8260B
	94	(75 - 115)	1.3	(0-20)	SW846 8260B
Bromodichloromethane	98	(78 - 118)			SW846 8260B
	100	(78 - 118)	2.7	(0-20)	SW846 8260B
Carbon tetrachloride	108	(80 - 120)			SW846 8260B
	102	(80 - 120)	5.7	(0-21)	SW846 8260B
Chlorobenzene	94	(78 - 118)		_	SW846 8260B
	92	(78 - 118)	2.5	(0-20)	SW846 8260B
Chloroform	103	(78 - 118)			SW846 8260B
	106	(78 - 118)	2.6	(0-20)	SW846 8260B
1,1-Dichloroethane	106	(77 - 117)			SW846 8260B
	105	(77 - 117)	1.3	(0-21)	SW846 8260B
trans-1,2-Dichloroethene	97	(80 - 120)			SW846 8260B
	92	(80 - 120)	4.8	(0-24)	SW846 8260B
1,1-Dichloroethene	104	(68 - 133)			SW846 8260B
	97	(68 – 133)	7.0	(0-20)	SW846 8260B
1,2-Dichloropropane	104	(76 - 116)			SW846 8260B
	104	(76 - 116)	0.24	(0-20)	SW846 8260B
Ethylbenzene	106	(78 - 118)		40.00	SW846 8260B
	95	(78 - 118)	10	(0-26)	SW846 8260B
Methylene chloride	87	(71 - 119)			SW846 8260B
	90	(71 - 119)	3.3	(0-20)	SW846 8260B
Tetrachloroethene	82	(77 - 117)	- ^	(0.00)	SW846 8260B SW846 8260B
_	63 a	(77 - 117)	5.9	(0-20)	SW846 8260B
Toluene	93	(73 - 120)		(0.20)	SW846 8260B
	91	(73 - 120)	1.1	(0-20)	SW846 8260B
1,1,1-Trichloroethane	109	(78 - 118)	1.8	(0-20)	SW846 8260B
	107	(78 - 118)	1.6	(0-20)	SW846 8260B
Trichloroethene	100	(78 - 122)	2.4	(0-20)	SW846 8260B
	97	(78 - 122)	2.4	(0-20)	photo cross
		PERCENT	,	RECOVERY	
ormpodams		RECOVERY		LIMITS	
SURROGATE Dibromofluoromethane	-	92		(79 - 11	 9)
Dibromoriuoromethane		97		(79 - 11	
1.2-Dichloroethane-d4		110		(65 - 12	
1,2-Dichtoroechane-d4		115		(65 - 12	
				,	•

(Continued on next page)

MATRIX SPIKE SAMPLE DATA REPORT

GC/MS Volatiles

Client Lot #...: D8B060251 Work Order #...: KGKLK1AD-MS Matrix..... WATER

MS Lot-Sample #: D8B050227-012 KGKLK1AE-MSD

 Date Sampled...:
 02/04/08 11:45 Date Received...
 02/05/08

 Prep Date.....:
 02/12/08 Analysis Date...
 02/14/08

 Prep Batch #...:
 8045408 Analysis Time...
 17:12

Dilution Factor: 1

	SAMPLE	SPIKE	MEASRD		PERCNT			
PARAMETER	AMOUNT	AMT	TRUOMA	UNITS	RECVRY	RPD	METHOL)
Benzene	1.6	10.0	11.6	ug/L	100		SW846	8260B
	1.6	10.0	11.6	ug/L	100	0.26	SW846	8260B
1,3-Dichlorobenzene	ND	10.0	9.25	ug/L	93		SW846	8260B
	ND	10.0	9.37	ug/L	94	1.3	SW846	8260B
Bromodichloromethane	ND	10.0	9.76	ug/L	98		SW846	8260B
	ND	10.0	10.0	ug/L	100	2.7	SW846	8260B
Carbon tetrachloride	ND	10.0	10.8	ug/L	108		SW846	8260B
	ND	10.0	10.2	ug/L	102	5.7	SW846	8260B
Chlorobenzene	ND	10.0	9.38	ug/L	94		SW846	8260B
	ND	10.0	9.16	ug/L	92	2.5	SW846	8260B
Chloroform	ND	10.0	10.3	ug/L	103		SW846	8260B
	ND	10.0	10.6	ug/L	106	2.6	SW846	8260B
1,1-Dichloroethane	1.7	10.0	12.4	ug/L	106		SW846	8260B
	1.7	10.0	12.2	ug/L	105	1.3	SW846	8260B
trans-1,2-Dichloroethene	0.43	10.0	10.1	ug/L	97		SW846	8260B
	0.43	10.0	9.67	ug/L	92	4.8	SW846	8260B
1,1-Dichloroethene	0.44	10.0	10.9	ug/L	104		SW846	8260B
•	0.44	10.0	10.1	ug/L	97	7.0	SW846	8260B
1,2-Dichloropropane	ND	10.0	10.4	ug/L	1.04		SW846	8260B
	ND	10.0	10.4	ug/L	104	0.24	SW846	8260B
Ethylbenzene	ND	10.0	10.6	ug/L	106		SW846	8260B
•	ND	10.0	9.51	ug/L	95	10	SW846	8260B
Methylene chloride	ND	10.0	8.69	ug/L	87		SW846	8260B
•	ND	10.0	8.98	ug/L	90	3.3	SW846	8260B
Tetrachloroethene	24	10.0	32.7	ug/L	82		SW846	8260B
	24	10.0	30.8	ug/L	63 a	5.9	SW846	8260B
Toluene	1.3	10.0	10.5	ug/L	93		SW846	8260B
	1.3	10.0	10.4	ug/L	91	1.1	SW846	8260B
1,1,1-Trichloroethane	ND	10.0	10.9	ug/L	109		SW846	8260B
	ND	10.0	10.7	ug/L	107	1.8	SW846	8260B
Trichloroethene	2.9	10.0	12.9	ug/L	100		SW846	8260B
	2.9	10.0	12.6	ug/L	97	2.4	SW846	8260B
		P	ERCENT	R	ECOVERY			

	PERCENT	RECOVERY
SURROGATE	RECOVERY	LIMITS
Dibromofluoromethane	92	(79 - 119)
	97	(79 - 119)
1,2-Dichloroethane-d4	110	(65 - 126)
·	115	(65 - 126)

(Continued on next page)

METHOD BLANK REPORT

GC Volatiles

Client Lot #...: D8B060251 Work Order #...: KGXVM1AA Matrix....: WATER

MB Lot-Sample #: I8B120000-083

Prep Date....: 02/11/08 Analysis Time..: 09:27

Dilution Factor: 1

REPORTING

 PARAMETER
 RESULT
 LIMIT
 UNITS
 METHOD

 Methane
 ND
 0.50
 ug/L
 RSK SOP-175

NOTE(S):

LABORATORY CONTROL SAMPLE DATA REPORT

GC Volatiles

Client Lot #...: D8B060251 Work Order #...: KGXVM1AC-LCS Matrix..... WATER

LCS Lot-Sample#: I8B120000-083 KGXVM1AD-LCSD

 Prep Date....:
 02/11/08
 Analysis Date..:
 02/11/08

 Prep Batch #...:
 8043083
 Analysis Time..:
 09:44

Dilution Factor: 1

PARAMETER	SPIKE AMOUNT	MEASURED AMOUNT	UNITS	PERCENT RECOVERY	RPD_	METHOD
Methane	46.7	50.7	ug/L	109		RSK SOP-175
	46.1	49.4	ug/L	107	2.6	RSK SOP-175
Ethane	88.5	96.1	ug/L	109		RSK SOP-175
	87.3	93.7	ug/L	107	2.5	RSK SOP-175
Ethene	81.7	88.0	ug/L	108		RSK SOP-175
	80.6	85.6	ug/L	106	2.7	RSK SOP-175

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

Bold print denotes control parameters

MATRIX SPIKE SAMPLE DATA REPORT

GC Volatiles

Client Lot #...: D8B060251 Work Order #...: KGRLM1AC-MS Matrix.....: WATER

MS Lot-Sample #: I8B080135-002 KGRLM1AD-MSD

 Date Sampled...:
 02/04/08 13:50 Date Received...:
 02/08/08

 Prep Date....:
 02/11/08
 Analysis Date...:
 02/11/08

 Prep Batch #...:
 8043083
 Analysis Time...:
 12:11

Dilution Factor: 1

PARAMETER	SAMPLE AMOUNT	SPIKE AMT	MEASRD AMOUNT	UNITS	PERCNT RECVRY	RPD	METHOD
Methane	17	44.7	60.0	ug/L	97		RSK SOP-175
	17	45.9	64.6	ug/L	105	7.4	RSK SOP-175
Ethane	0.062	84.6	82.7	ug/L	98		RSK SOP-175
	0.062	B7.0	90.2	ug/L	104	8.7	RSK SOP-175
Kthene	0.54	78.1	75.7	ug/L	96		RSK SOP-175
	0.54	80.3	84.3	ug/L	104	11	RSK SOP-175

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

Bold print denotes control parameters

LABORATORY CONTROL SAMPLE EVALUATION REPORT

TOTAL Metals

D8B060251		Matrix: WATER			
PERCENT RECOVERY	RECOVERY LIMITS	METHOD	PREPARATION- ANALYSIS DATE	WORK ORDER #	
D8B120000-	200 Prep Bar	tch #: 8043200			
92	(89 - 114)	SW846 6010B	02/13/08	KGX621CF	
	Dilution Facto	or: 1 Analysis	Time: 13:47		
92	(90 - 113)	SW846 6010B	02/13/08	KGX621CG	
	Dilution Facto	or: 1 Analysis	Time: 13:47		
94	(90 - 111)	SW846 6010B	02/13/08	KGX621CH	
	Dilution Facto	or: 1 Analysis	Time: 13:47		
91	(90 - 115)	SW846 6010B	02/13/08	KGX621CJ	
	Dilution Facto	or: 1 Analysis	Time: 13:47		
	RECOVERY D8B120000- 92 92 94	PERCENT RECOVERY RECOVERY LIMITS D8B120000-200 Prep Ba 92 (89 - 114) Dilution Factor 92 (90 - 113) Dilution Factor 94 (90 - 111) Dilution Factor 91 (90 - 115)	PERCENT RECOVERY RECOVERY LIMITS METHOD D8B120000-200 Prep Batch #: 8043200 92 (89 - 114) SW846 6010B Dilution Factor: 1 Analysis 92 (90 - 113) SW846 6010B Dilution Factor: 1 Analysis 94 (90 - 111) SW846 6010B Dilution Factor: 1 Analysis 91 (90 - 115) SW846 6010B	PERCENT RECOVERY RECOVERY LIMITS METHOD D8B120000-200 Prep Batch #: 8043200 92 (89 - 114) SW846 6010B Dilution Factor: 1 Analysis Time: 13:47 92 (90 - 113) SW846 6010B Dilution Factor: 1 Analysis Time: 13:47 94 (90 - 111) SW846 6010B Dilution Factor: 1 Analysis Time: 13:47	

MATRIX SPIKE SAMPLE EVALUATION REPORT

TOTAL Metals

Client Lot :	•	Matrix: WATER			
PARAMETER	PERCENT RECOVERY	RECOVERY RPD LIMITS RPD LIMITS	METHOD	PREPARATION- ANALYSIS DATE	WORK ORDER #
MS Lot-Samp	le #: D8B06	50234-001 Prep Batch #	.: 8043200		
Potassium	90	(76 - 132)	SW846 6010B	02/13/08	KGMHD1A0
	94	(76 - 132) 3.2 (0-25) Dilution Factor: 1	SW846 6010B	02/13/08	KGMHD1A1
		Analysis Time: 16:51			
Magnesium	95	(62 - 146)	SW846 6010B	02/13/08	KGMHD1A2
•	99	(62 - 146) 3.9 (0-25) Dilution Factor: 1	SW846 6010B	02/13/08	KGMHD1A3
		Analysis Time: 16:51			
Calcium	97	(48 - 153)	SW846 6010B	02/13/08	KGMHD1A4
711	101	(48 - 153) 3.8 (0-25)	SW846 6010B	02/13/08	KGMHD1A5
		Dilution Factor: 1 Analysis Time: 16:51			
Sodium	82	(70 - 203)	SW846 6010B	02/13/08	KGMHD1A6
	85	(70 - 203) 2.6 (0-40)	SW846 6010B	02/13/08	KGMHD1A7
		Dilution Factor: 1 Analysis Time: 16:51			
NOTE(S):		-			

MATRIX SPIKE SAMPLE EVALUATION REPORT

TOTAL Metals

Client Lot #...: D8B060251 Matrix.....: WATER

Date Sampled...: 02/05/08 08:42 Date Received..: 02/06/08

PARAMETER	PERCENT RECOVERY		PD IMITS METHOD	PREPARATION- ANALYSIS DATE	WORK ORDER #
MS Lot-Samp	le #: D8B06	50255-001 Prep Bat	ch #: 8043200		
Potassium	96	(76 - 132)	SW846 6010B	02/13/08	KGMPV1C3
	98	(76 - 132) 2.5 (0-25) SW846 6010B	02/13/08	KGMPV1C4
		Dilution Factor	; 1		
		Analysis Time	: 14:03		
Magnesium	94	(62 - 146)	SW846 6010B	02/13/08	KGMPV1C6
-	97	(62 - 146) 2.8 (0-25) SW846 6010B	02/13/08	KGMPV1C7
		Dilution Factor	: 1		
		Analysis Time	: 14:03		
Calcium	96	(48 - 153)	SW846 6010B	02/13/08	KGMPV1C9
	99	(48 - 153) 2.7 (0-25) SW846 6010B	02/13/08	KGMPV1DA
		Dilution Factor			
		Analysis Time	: 14:03		
Sodium	94	(70 - 203)	SW846 6010B	02/13/08	KGMPV1DD
	97	(70 - 203) 2.8 (0-40) SW846 6010B	02/13/08	KGMPV1DE
		Dilution Factor		• •	
		Analysis Time	: 14:03		

NOTE(S):

METHOD BLANK REPORT

General Chemistry

Client Lot #: D8B060251 Matrix	WATER
--------------------------------	-------

PARAMETER	RESULT	REPORTING LIMIT	UNITS	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH
Ammonia as N	ND	Work Order 0.040 Dilution Fact Analysis Time		MB Lot-Sample #: MCAWW 350.1	D8B120000-137 02/11/08	804313
Bicarbonate, as Ca	aCO3 ND	Work Order 5.0 Dilution Fact Analysis Time	mg/L cor: 1	MB Lot-Sample #: MCAWW 310.1	D8B090000-132 02/07/08	804013
Carbonate, as CaCC	ND	Work Order 5.0 Dilution Fact Analysis Time	mg/L cor: 1	MB Lot-Sample #: MCAWW 310.1	D8B090000-134 02/07/08	804013
Chloride	ND	Work Order 0.30 Dilution Fact Analysis Time	mg/L cor: 1	MB Lot-Sample #: MCAWW 300.0A	D8B080000-085 02/07/08	803908
Free carbon dioxid	de ND	Work Order 5.0 Dilution Fact Analysis Time	mg/L cor: 1	MB Lot-Sample #: SM18 4500-CO2 C	D8B190000-421 02/07/08	80504:
Sulfate	ND	Work Order 5.0 Dilution Fact Analysis Time	mg/L cor: 1	MB Lot-Sample #: MCAWW 300.0A	D8B080000-086 02/07/08	80390
Total Alkalinity	1.5 B	Work Order 5.0 Dilution Fact Analysis Time	mg/L tor: 1	MB Lot-Sample #: MCAWW 310.1	D8B090000-130 02/07/08	80401
Total Dissolved Solids		Work Order	#: KGX451AA	MB Lot-Sample #:	D8B070000-396	
3322	ND	10 Dilution Fac Analysis Tim		MCAWW 160.1	02/07/08	80383
Total Organic Car	bon 0.57 B	Work Order 1.0 Dilution Fac Analysis Tim		MB Lot-Sample #: MCAWW 415.1	D8B110000-107 02/07/08	80421

(Continued on next page)

LABORATORY CONTROL SAMPLE EVALUATION REPORT

General Chemistry

Matrix....: WATER

Lot-Sample	# -	D8B060251	
POT SOMETH	#	Ternongor	

•								
	PERCENT	RECOVERY		RPD			PREPARATION-	PREP
PARAMETER	RECOVERY						ANALYSIS DATE	
Ammonia as N		WO# : KGX					Lot-Sample#: D8B1	
	102	(90 - 110)					02/11/08	
	103	(90 - 110)	0.80	(0-10)	MCAWW 3	50.1	02/11/08	8043137
		Diluti	on Fact	tor: 1	Analy	sis Time	.: 10:00	
Chloride		WO#:KGR	ek1ac	-LCS/KGR	EK1AD-LC	SD LCS	Lot-Sample#: D8B0	80000-085
•	101	(90 - 110)			MCAWW 3	A0.00	02/07/08	8039085
	99	(90 - 110)	2.4	(0-10)	MCAWW 3	A0.00	02/07/08	8039085
					Analy			
Sulfate		WO#:KGR	EllAC	-LCS/KGR	E11AD-LC	SD LCS	Lot-Sample#: D8B0	80000-086
		(90 - 110)			MCAWW 3	AO.00	02/07/08	8039086
	98	(90 - 110)	1.8	(0-10)	MCAWW 3	00.0A	02/07/08	8039086
					Analy			
Total Alkalin	nity	WO#:KGW	EL1AC	-LCS/KGW	EL1AD-LC	SD LCS	Lot-Sample#: D8B0	90000-130
	98	(90 - 110)			MCAWW 3	310.1	02/07/08	8040130
	98	(90 - 110)	0.50	(0-10)	MCAWW 3	310.1	02/07/08	8040130
					Analy			
Total Dissolv	ved	WO#: KGX	451AC	-LCS/KGX	451AD-LC	SD LCS	Lot-Sample#: D8B0	70000-396
	93	(86 - 106)			MCAWW 1	160.1	02/07/08	8038396
	96	(86 - 106)	2.7	(0-20)	MCAWW I	160.1	02/07/08	8038396
					Analy			
Total Organic	c Carbon	WO#:KGX	HL1AC	-LCS/KGX	HL1AD-LC	CSD LCS	Lot-Sample#: D8B1	10000-10
3		(86 - 114)			MCAWW 4	15.1	02/07/08	8042107
	100	(86 - 114)	1.5	(0-12)	MCAWW 4	15.1	02/07/08	8042107
					Analy			

NOTE(S)

MATRIX SPIKE SAMPLE EVALUATION REPORT

General Chemistry

Client Lot #...: D8B060251 Matrix.....: WATER

Date Sampled...: 02/06/08 10:39 Date Received..: 02/07/08

	N (90 - 110) N (90 - 110) Dilu	KGKT81AE-MS/K	MCAWW 350.1 MCAWW 350.1	PREPARATION ANALYSIS DA MS Lot-Sample #: 02/11/08 02/11/08	TE BATCH # D8B050252-002 8043137
Ammonia as N 85 1 84 1	N (90 - 110) N (90 - 110)	•	MCAWW 350.1 MCAWW 350.1	MS Lot-Sample #: 02/11/08 02/11/08	8043137
Chloride 102 103	(80 ~ 120) (80 - 120) Dilu	•	MCAWW 300.0A MCAWW 300.0A	MS Lot-Sample #: 02/07/08 02/07/08	8039085
Sulfate 102 102	(80 - 120) (80 - 120) Dilu	•	MCAWW 300.0A MCAWW 300.0A	MS Lot-Sample #: 02/07/08 02/07/08	8039086
Total Organic Car 98 98	(65 - 139) (65 - 139) Dilu		MCAWW 415.1 MCAWW 415.1	MS Lot-Sample #: 02/07/08 02/07/08	8042107

NOTE (S):

N Spiked analyte recovery is outside stated control limits.

SAMPLE DUPLICATE EVALUATION REPORT

General Chemistry

Client Lot #...: D8B060251

Work Order #...: KGKWV-SMP

Matrix....: WATER

KGKWV-DUP

Date Sampled...: 02/04/08 11:45 Date Received..: 02/05/08

DUPLICATE RPD PREPARATION-PREP PARAM RESULT RESULT UNITS METHOD RPD LIMIT ANALYSIS DATE BATCH # Total Dissolved SD Lot-Sample #: D8B050263-005 Solids 400 390 mg/L 3.3 (0-20) MCAWW 160.1 02/07/08 8038397 Dilution Factor: 1 Analysis Time..: 17:00

Ĺ	Ŧ

Custody Record Chain of

SEVERN TRENT 1.9°C

Severn Trent Laboratories, Inc.

Test America (O Special Instructions/ Conditions of Receipt (A fee may be assessed if samples are retained forger than 1 month) 3 Chain of Custody Number õ 3 80/89/8 Page. Dave 윱 4370 \times 3 Methica HWWWWJIE Analysis (Attach list If more space is needed Lab Number WS Jul Months Date TH NA Disposal By Lab Archive For OC Requirements (Specify) Containers & Preservatives HOPN 3. Received By 74 ЮH Selephone Number (Area Code)/Fax Number メ CONF Lab Contact (470) - 805 - 3529 Sie Conlact | Lab Conlac ≠OSZ1-> Wark Shyder seudur Return To Client unchard Time 17:00 Income Standard Sample Disposal New F Shyden No2 Time Carrier/Waybill Number Matrix pes 150-EX 8007/5/7 <u>.</u>§ Project Manager $\overline{}$ 479 ☐ Unknown 27:21 Date Time 21 Days 118/08 2059 Paces Ferry Rd. Ste. 1600 80/5/2 Skin tritlant ' Polson B 30339 Date 14 Days Commens FED-EX PRIORITY O.N. Sample I.D. No. and Description (Containers for each sample may be combined on one line) Management 64 3400-This Blank 7 Days ☐ Flammable contract/Purchase Order/Quote No AHCONTC. Project Name and Location (State) 3-pht92 24 Hours 1 48 Hours Possible Hazard Identification Turn Around Time Required 34016-TO Jane 1 1. Relinquished By (3. Retimpulshed By 2. Relinquished By Non-Hazard MOSTE CAMON 1124 (0807)

DISTRIBUTION: WHITE - Returned to Client with Report; CANARY - Stays with the Sample; PINK - Field Copy